Энзимы в организме человека: это надо знать всем! Что такое ферменты, их роль Лизирующие ферменты.

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

Пермский государственный технический университет

Кафедра химии и биотехнологии

Реферат:

Литические ферменты. Лизоцим

Выполнила:

студентка гр.ХТБмПиБ-05

Шевченко И.К.

Руководитель:

к.б.н. Грязнова Д.В.


Пермь, 2010

Литические ферменты микробного происхождения 5

История открытия 5

Локализация и физиологическая роль бактериолитических ферментов в бактериальных культурах 6

Влияние строения клеточных стенок бактерий на литическую способность ферментов 7

Пептидогликан клеточных стенок бактерий. 8

Субстратная специфичность бактериолитических ферментов 9

Открытие бактериолитического комплекса "Лизоамидаза" 10

Перспективы использования лизоамидазы в медицине 10

ЛИЗОЦИМ 12

Механизм лизиса 13

Заключение. 15

Литература. 16


Введение.

Проблема лизиса клеточных стенок микроорганизмов различных таксономических групп с целью повышения их питательной ценности и получения в недеградированном виде биологически активных веществ, содержащихся в протоплазме микробных клеток, является актуальной и имеющей народохозяйственное значение.

Для разрушения микробной биомассы известны различные физические и биохимические способы. Ферментативный способ разрушения клеточных стенок, в отличие от физико-химических способов, позволяет осуществлять контролируемое воздействие на клетки и извлекать из них целевые продукты.

Среди ферментов, продуцируемых микроорганизмами, особое место занимают литические ферменты, катализирующие биохимические реакции последовательной деградации структурных элементов микробной клеточной стенки.

Применение препаратов литических ферментов позволяет интенсифицировать выделение из микробной биомассы многих ценных физиологически активных веществ: ферментов, витаминов, аминокислот и др. Известно, что клеточная стенка кормовых дрожжей препятствует усвоению цитоплазматических веществ клетки при скармливании ее животным. Биомасса кормовых дрожжей после ферментативного лизиса клеточных стенок обладает повышенной питательной ценностью, что дает возможность более эффективно использовать её в кормопроизводстве, в том числе в составе заменителей цельного молока для молодняка сельскохозяйственных животных.

Также литические ферменты могут быть использованы в технологиях охраны окружающей среды, на этапах утилизации микробной биомассы, являющейся отходом микробиологических производств.

Кроме того, на основе литических ферментов в последнее время разрабатываются антимикробные лекарственные средства, в том числе для лечения дерматомикозов, которые имеют ряд преимуществ перед химически синтезируемыми фунгицидами. Получены положительные результаты при использовании их для лечения заболеваний желудочно-кишечного тракта сельскохозяйственных животных. Применение литических ферментов перспективно при борьбе со стафилококковой инфекцией, при лечении кариеса зубов.

Особый интерес для создания промышленного производства ферментов представляют термотолерантные микроорганизмы, в том числе актиномицеты-продуценты литических ферментов, которые обладают высокой скоростью роста и устойчивостью к изменениям температуры культивирования. Также важно, что термотолерантные культуры часто оказываются более конкурентоспособными по сравнению с мезофильными продуцентами в отношении инфицирующей микрофлоры.

Литические ферменты микробного происхождения

Хорошо известно, что клетки бактерий, грибов и высших растений в отличие от клеток животных обладают, как правило, очень мощными клеточными стенками. Это связано с необходимостью противостояния этими организмами многочисленным биологическим, химическим и физическим факторам среды их обитания. Вместе с тем для проведения многих экспериментов в области современной клеточной и молекулярной биологии необходимо иметь "голые", лишенные толстых клеточных стенок клетки этих организмов. Такие "голые" клетки, или "протопласты", широко используют для опытов по слиянию клеток, для различных генноинженерных манипуляций и т.д. В связи с этими проблемами пристальное внимание ученых уже давно привлекают специфические ферменты (биологические катализаторы белковой природы), способные разрушать (лизировать) клеточные стенки бактерий, грибов и высших растений. Кстати говоря, с развитием работ по ферментативному лизису клеточных стенок этих организмов в значительной степени связан достигнутый к настоящему времени прогресс в изучении строения и функционирования поверхностных структур таких клеток.

Оказалось, что разрушающие клеточные стенки (литические) ферменты находятся в значительном количестве в самих этих структурах, в непосредственной близости от объектов своего действия. Такие ферменты называются эндогенными (внутриклеточными). Кроме того, установлено, что часть литических ферментов является экзогенными, то есть секретируемыми (выделяемыми) в среду обитания образующих их организмов.

Локализация и физиологическая роль бактериолитических ферментов в бактериальных культурах

Если говорить о месте нахождения бактериолитических ферментов в бактериальной культуре, то следует в первую очередь разделить их в этом отношении на три группы.

Первую группу составляют автолизины - бактериолитические ферменты, присутствующие всегда (в активном или неактивном состоянии) в самой клеточной стенке. Они принимают участие в процессе роста и дифференцировки бактериальных клеток. В клетке бактерий, по-видимому, в норме имеется взаимосвязь между активностями ферментов, разрушающих и синтезирующих компоненты клеточной стенки. Действительно, встраивание вновь синтезированных материалов в клеточную стенку не может происходить без предварительного расщепления определенных химических связей.

Процессы лизиса и биосинтеза стенки происходят одновременно с ростом и развитием бактериальной клетки и только на поздних стадиях развития, когда биосинтетические процессы затихают, а активность литических ферментов остается на прежнем уровне, происходит лизис клетки бактерий.

Ко второй группе можно отнести литические ферменты бактериальных спор . Они активируются наряду с другими ферментами, участвующими в деградации биополимеров в период споруляции (образования спор) и при прорастании спор бактерий. Данные ферменты принимают участие в процессах разрушения оболочки и как автолизины в процессах роста и морфогенеза бактериальной клетки.

Наконец, третья группа - это внеклеточные литические ферменты . Биологическая роль их заключается, по-видимому, в том, что бактерии, синтезирующие и секретирующие такие ферменты в среду, имеют преимущество перед другими бактериями, прежде всего в источниках питания. Разрушая клетки других бактерий, бактерия - продуцент литических ферментов использует аминокислоты, углеводы и другие компоненты лизированной клетки для собственных нужд. Кроме того, данная группа бактериолитических ферментов играет безусловно важную роль для защиты клеток, секретирующих эти ферменты в среду, от других бактерий, обитающих в той же экологической нише.

Влияние строения клеточных стенок бактерий на литическую способность ферментов

Все бактерии можно разделить на две существенно различающиеся группы: грамотрицательную и грамположительную. Различие связано с принципиально разным строением клеточных стенок грамположительных и грамотрицательных бактерий. У грамположительных бактерий (например, у стафилококков или микрококков) клеточная стенка состоит из многослойной структуры толщиной 70-80 нм, называемой пептидогликаном. Пептидогликановый мешок, покрывающий цитоплазматическую мембрану этих клеток, состоит из полисахаридных цепей, связанных между собой в единую сеть пептидными мостиками. На его долю у грамположительных бактерий приходится до 80% веса их клеточных оболочек. Кроме пептидогликана в состав клеточных стенок этих бактерий входят отрицательно заряженные полимеры - так называемые тейхоевые кислоты (от греч. "тейхос" - стенка). Часть тейхоевых кислот связана ковалентно с пептидогликановой сетью, а часть - с липидами цитоплазматической мембраны. В последнем случае они называются липидтейхоевыми кислотами. Тейхоевые кислоты вследствие присутствия в их составе фосфорной кислоты обеспечивают создание на поверхности клеток грамположительных бактерий электроотрицательного заряда.

У одних грамположительных бактерий (например, у золотистого стафилококка) тейхоевые кислоты состоят из нескольких десятков молекул рибитолфосфата - рибитолтейхоевые кислоты, у других грамположительных бактерий эти биополимеры состоят из молекул глицеролфосфата (глицеролтейхоевые кислоты). Тейхоевые кислоты присутствуют только у грамположительных бактерий.

Основным отличием в строении оболочек грамположительных и грамотрицательных бактерий является наличие у последних кроме цитоплазматической еще одной, так называемой внешней мембраны. Данная структура, расположенная над тонким, одно-трехслойным пептидогликановым мешком (8 нм), является типичной двуслойной мембраной, в которой выявлено довольно много достаточно уникальных компонентов: липополисахаридов, липопротеинов, а также белков - поринов, из которых образованы поры во внешней мембране, позволяющие проникать в оболочку (и из нее в среду) сравнительно низкомолекулярным соединениям.

Бактериолитические ферменты не могут гидролизовать пептидогликановый слой в целых клетках грамотрицательных бактерий без удаления внешней мембраны, которое может быть достигнуто только обработкой этих клеток хелатирующими агентами, детергентами или физическими методами.

Пептидогликан клеточных стенок бактерий.

Он ответствен в первую очередь за поддержание формы бактериальных клеток и является структурой, на разрушение которой направлено действие бактериолитических ферментов. Важно при этом подчеркнуть, что у всех истинных бактерий пептидогликан обязательно присутствует, но доступность его для действия бактериолитических ферментов у грамположительных и грамотрицательных существенно отличается.

Как уже было указано выше, пептидогликан состоит из полисахаридных цепей и пептидных мостиков, объединяющих всю структуру в единый "мешок", окружающий бактериальную клетку снаружи. Полисахаридные (гликановые) цепи образованы чередованием двух "кирпичей" - азотсодержащих производных глюкозы: N-ацетилглюкозамина и N-ацетилмурамовой кислоты - и в целом представляют собой хитиноподобную структуру. Это интересно с эволюционной точки зрения, так как хитин и хитиноподобные структуры широко распространены почти у всех представителей живого мира (исключая только растения) и являются одними из наиболее распространенных на Земле биополимеров.

Строение гликановых цепей пептидогликана большинства изученных бактерий одинаково. Пептидная же часть пептидогликана у разных бактерий может существенно отличаться. Однако во всех случаях она образована из 4-5 остатков L- или D-аминокислот. Эти короткие пептиды, с одной стороны, своей свободной NH2-группой соединены амидной связью с карбоксилом мурамовой кислоты, а с другой - связаны с таким же коротким пептидом соседней гликановой цепи. У грамположительных бактерий, в частности у золотистого стафилококка, пептиды, связанные с гликановыми цепями, связываются между собой не непосредственно, а с участием дополнительного пептида, так называемого перекрестно-связывающего мостика. У золотистого стафилококка этот пептидный мостик состоит из пяти молекул простейшей аминокислоты глицина. Наличие в структуре пептидогликана грамположительных бактерий таких мостиков делает ее как бы более плотной, что является одной из важнейших причин удерживания именно этими клетками красителя при окрашивании их по Граму. Гидролиз (расщепление с помощью воды) тех или иных связей в пептидогликане приводит к деградации клеточной стенки и лизису бактерий.

Субстратная специфичность бактериолитических ферментов

По субстратной специфичности бактериолитические ферменты делятся на три типа.

  • Первый тип составляют так называемые гликозидазы, разрушающие полисахаридные (гликановые) цепи. К ним относятся N-ацетилмурамидаза (лизоцим), гидролизующая связь между N-ацетилмурамовой кислотой и N-ацетилглюкозамином, и N-глюкозаминидаза, гидролизующая связь между N-ацетилглюкозамином и N-ацетилмурамовой кислотой.

  • Второй тип представлен одним ферментом - N-ацетилмурамил-L-аланиламидазой (или просто амидазой), расщепляющей связь между мурамовой кислотой полисахарида и пептидной частью.

  • К третьему типу относятся пептидазы, гидролизующие пептидные связи пептидогликана.
К настоящему времени выявлено много бактериолитических пептидаз с разной специфичностью - одни расщепляют только связь глицил-глицин в перекрестно-связывающих мостиках, другие - связь глицил-аланин и т.д. Очень часто одна и та же бактерия секретирует в среду культивирования целый набор бактериолитических ферментов, относящихся к разным типам и, следовательно, гидролизующих пептидогликан в разных местах. Так, например, в состав бактериолитического комплекса, названного лизостафином и выделяемого из культуры Staphylococcus staphylolyticus, входят три фермента: N-ацетилглюкозаминидаза, N-ацетилмурамил-L-аланиламидаза и пептидаза, расщепляющая только связь глицил-глицин и гидролизующая клеточные стенки золотистого стафилококка.

Открытие бактериолитического комплекса "Лизоамидаза"

В 1975 году в Институте биохимии и физиологии микроорганизмов РАН в Пущине (на берегу р.Оки) было сделано интересное наблюдение. В водах Оки ниже Пущина микробиологами Г.К. Скрябиным, В.А. Ламбиной и др. было обнаружено довольно обширное "стерильное пятно", практически не содержащее бактерий. Из проб воды в непосредственной близости от "пятна" была выделена культура бактерий рода Xanthomonas, которые выделяли в среду некий фактор, тормозящий рост многих бактерий, в том числе и патогенных. Биохимики института под моим руководством установили, что действующим антибактериальным началом этого "фактора" является комплекс высокомолекулярного полисахарида, заряженного электроотрицательно, и положительно заряженных ферментов. Очищенный препарат этого комплекса был назван лизоамидазой. Уже на первом этапе его биохимического изучения было установлено, что он содержит бактериолитические ферменты, способные расщеплять в пептидогликане пептидные (или амидные) связи, приводя в конечном итоге к лизису бактериальных клеток.

Перспективы использования лизоамидазы в медицине

Уже на первом этапе изучения свойств препарата лизоамидазы стало ясно, что он может успешно использоваться не только в биологии, например для получения лишенных клеточных стенок протопластов бактерий (рис. 4), но и в медицине. Оказалось, что препарат лизоамидаза является эффективным средством борьбы со множественно устойчивыми к антибиотикам патогенными микроорганизмами.

В настоящее время одной из важнейших проблем медицины является очень быстрое возникновение у клинических форм патогенных бактерий устойчивости (невосприимчивости) к используемым в медицинской практике антибиотикам. Например, в большинстве родильных домов как в России, так и в других странах по указанным выше причинам становится все труднее бороться с гнойными инфекциями, вызываемыми, в частности, такими бактериями, как стафилококки и стрептококки. Вместе с тем было показано, что препарат лизоамидаза очень эффективно лизирует множественно устойчивые к антибиотикам штаммы стафилококков и других грамположительных патогенных бактерий.

Лизоамидаза эффективно убивает клинические штаммы, на которые ни при каких концентрациях не действуют практически все применяемые в российских клиниках антибиотики. Дальнейшие медико-биологические и клинические испытания этого препарата привели медиков к заключению, что лизоамидаза - прекрасное средство борьбы с гнойными инфекциями. Она может широко использоваться в гнойной хирургии, стоматологии, гинекологии при лечении трудно заживающих трофических язв и т.д. В настоящее время препарат допущен к применению в медицинской практике и его производство налажено на Вышневолоцком заводе ферментных препаратов медицинского назначения.

При медико-биологическом и клиническом испытании препарата оказалось, что он обладает не только литическим действием на патогенные бактерии, но также хорошо очищает раны от некротических (мертвых) тканей, а также стимулирует заживление ран, обладая мощным иммуностимулирующим действием.

Выяснилось, что эффективная очистка ран от некротических масс (в первую очередь состоящих из денатурированных белков) связана с присутствием в препарате лизоамидазы не только бактериолитических ферментов, но также и протеаз (белокразрушающих ферментов). А иммуностимулирующая активность лизоамидазы обусловлена присутствием в препарате полисахарида. Наличие полисахарида имеет принципиальное значение для возможности использования лизоамидазы в медицине, поскольку имеющиеся в лизоамидазе бактериолитические ферменты связаны электростатически с полисахаридом, что приводит к существенной их стабилизации. После отделения от полисахарида бактериолитические ферменты лизоамидазы, как и другие ранее известные их аналоги, через несколько дней теряют ферментативную активность. В составе же лизоамидазы эти ферменты сохраняют на холоде свою активность практически без изменения в течение нескольких лет, что является обязательным требованием к медицинским препаратам.

ЛИЗОЦИМ

Лизоцим (мурамидаза) - антибактериальный агент, фермент класса гидролаз, разрушающий клеточные оболочки бактерий путём гидролиза мурамилглюкозамина клеточной стенки грам-положительных бактерий. Лизоцим содержится, в первую очередь , в местах соприкосновения организма животных с окружающей средой - в слизистой оболочке желудочно-кишечного тракта, слёзной жидкости, грудном молоке, слюне, слизи носоглотки и т. д. В больших количествах лизоцим содержится в слюне, чем объясняются ее антибактериальные свойства. В грудном молоке человека концентрация лизоцима весьма высока (около 400 мг/л). Это намного больше, чем в коровьем. При этом концентрация лизоцима в грудном молоке не снижается со временем, через полгода после рождения ребенка она начинает возрастать.

Открыт в 1922г Александром Флемингом в слизи из полости носа и затем обнаружен во многих тканях и жидкостях человеческого организма (хрящи, селезёнка, лейкоциты, слёзы), в растениях (капуста, репа, редька, хрен), в некоторых бактериях и фагах и, в наибольшем количестве, в яичном белке. Лизоцим из разных источников различаются по строению, но близки по действию. Лизоцим яичного белка - первый фермент, для которого методом рентгеноструктурного анализа установлена трёхмерная структура и выявлена связь между строением и механизмом действия (1965); эти исследования - существенный вклад в представления о механизмах ферментативного катализа в целом.

Лизоцим - белок с молекулярной массой около 14 000; единственная полипептидная цепь состоит из 129 аминокислотных остатков и свёрнута в компактную глобулу (30×30×45 Å). Трёхмерная конформация полипептидной цепи поддерживается 4 дисульфидными (- S - S -) связями. (В лизоциме молока человека их 3, яичного белка гуся - 2, в лизоциме фага Т4 их нет; чем больше дисульфидных групп, тем лизоцим более устойчив, но менее активен.) Глобула лизоцима состоит из двух частей , разделённых щелью; в одной части большинство аминокислот (лейцин, изолейцин, триптофан и др.) содержит гидрофобные группы, в др. преобладают аминокислоты (лизин, аргинин, аспарагиновая к-та и др.) с полярными группами. Полярность окружения влияет на ионизацию двух карбоксильных групп (- СООН), расположенных на поверхности щели молекулы с разных её сторон (см. рис.). Лизоцим действует на один из основных компонентов бактериальной стенки - сложный полисахарид, состоящий из двух типов аминосахаров. Полисахарид сорбируется на молекуле лизоцима в щели на границе гидрофобной и гидрофильной её частей таким образом, что с ферментом связывается 6 колец аминосахаров, а одна из соединяющих их гликозидных связей (между 4 и 5 кольцами) оказывается между карбоксилами. Благодаря взаимодействиям между карбоксилами лизоцимf и атомами, образующими гликозидную связь, а также искажению валентных углов субстрата, происходит активация и разрыв связи. Это ведёт к разрушению оболочки бактериальной клетки.

Рис. Строение лизоцима. (Н. А. Кравченко)

Механизм лизиса

Фермент атакует пептидогликаны (в частности, муреин), входящие в состав клеточных стенок бактерий (особенно грам-положительных). Лизоцим гидролизует (1,4)-гликозидную связь между N-ацетилмурамовой кислотой и N-ацетилглюкозамином. Пептидогликан при этом связывается с активным центром фермента (в форме кармана), расположенным между двумя его структурными доменами. Молекула субстрата в активном центре принимает конформацию, близкую к конформации переходного состояния. В соответствии с механизмом Филлипса, лизоцим связывается с гексасахаридом, затем переводит 4-й остаток в цепи в конформацию твист-кресла. В этом напряженном состоянии гликозидная связь легко разрушается.

Остатки глутаминовой кислоты (Glu35) и аспарагиновой кислоты (Asp52) критичны для функционирования фермента. Glu35 выступает в качестве донора протона при разрыве гликозидной связи субстрата, разрушая связь, а Asp52 выступает в роли нуклеофила, при образовании интермедиата - гликозил-фермента. Затем гликозил-фермент реагирует с молекулой воды, в результате чего фермент возвращается в исходное состояние и образуется продукт гидролиза.


Применение

Препарат лизоцим применяют при лечении глаз, носоглотки, дёсен, ожогах, в акушерстве и др . В пищевой промышленности зарегистрирован в качестве пищевой добавки E1105.

Заключение.

Приведенные данные, свидетельствуют о важной роли, которую играют бактериолитические ферменты в жизнедеятельности бактерий и бактериальных сообществ, находящихся в одной и той же экологической нише.

На примере препарата лизоамидаза и лизоцими продемонстрированы перспективы использования бактериолитических ферментов в качестве эффективного лечебного средства для борьбы с патогенными бактериями, в том числе и множественно устойчивыми к антибиотикам.

Несмотря на большой интерес, проявляемый к проблеме ферментативного лизиса микроорганизмов, промышленное производство препаратов литических ферментов в России отсутствует . Поэтому изучение условий биосинтеза литических ферментов и разработка технологии получения ферментного препарата литического действия для использования в различных отраслях народного хозяйства и медицине, является актуальной и перспективной.

Литература.

1. Кулаев И.С., Северин А.И., Абрамочкин Г.В. Бактериолитические ферменты микробного происхождения в биологии и медицине // Вестн. АМН СССР. 1984. № 8. С. 64-69.

2. Савельев Е.П., Петров Г.И. Молекулярные основы строения клеточной стенки бактерий // Успехи биол.химии. 1978. Т. 19. С. 106.

3. Захарова И.Я., Павлова И.Н. Литические ферменты микроорганизмов. Киев: Наук. думка, 1985.

4. Скрябин Г.К., Кулаев И.С. Лизоамидаза - вызов микробам // Наука в СССР. 1990. № 2. С. 52-53.

5. Кулаев И.С. Бактериолитические ферменты микробного происхождения в биологии и медицине. // СОЖ, 1997, № 3, с. 23–31.

6. Филлипс Д., Трехмерная структура молекулы фермента, в сборнике: Молекулы и клетки, пер. с англ., в. 3, М., 1968;

7. Википедия: свободная энциклопедия [Электронный ресурс]. – URL: http://ru.wikipedia.org/wiki/Лизоцим (дата обращения: 15.05.2010)

8. Академика: электронные энциклопедии [Электронный ресурс]. – URL: http://dic.academic.ru/dic.nsf/bse/103560/лизоцим (дата обращения: 15.05.2010)

Ферменты, Фермент-субстратный комплекс и Энергия активации

Важнейшей функцией белков является каталитическая, ее выполняет определенный класс белков – ферменты. В организме выявлено более 2000 ферментов. Ферменты – это биологические катализаторы белковой природы, которые значительно ускоряют биохимические реакции. Так, ферментативная реакция происходит в 100-1000 раз быстрее, чем без ферментов. Многими свойствами они отличаются от катализаторов, использующихся в химии. Ферменты ускоряют реакции при обычных условиях, в отличие от химических катализаторов.

В организме человека и животных за несколько секунд происходит сложная последовательность реакций, для проведения которой с применением обычных химических катализаторов требуется продолжительное время (дни, недели или даже месяцы). В отличие от реакций без ферментов, в ферментативных не образуются побочные продукты (выход конечного продукта – почти 100 %). В процессе преобразований ферменты не разрушаются, поэтому небольшое их количество способно катализировать химические реакции большого количества веществ. Все ферменты – белки и имеют характерные для них свойства (чувствительность к изменениям pH среды, денатурация при высоких температурах и т. п.).

Ферменты по химической природе разделяют на однокомпонентные (простые) и двухкомпонентные (сложные) .

Однокомпонентные (простые)

Однокомпонентные ферменты состоят только из белков. К простым принадлежат преимущественно ферменты, которые осуществляют реакции гидролиза (пепсин, трипсин, амилаза, папаин и т. п.).

Двухкомпонентные (сложные)

В отличие от простых, сложные ферменты содержат небелковую часть – низкомолекулярный компонент. Белковая часть называется апоферментом (носителем фермента), небелковая – коферментом (активной или простетичной группой). Небелковая часть ферментов может быть представлена или органическими веществами (например, производными витаминов, НАД, НАДФ, уридиновыми, цитидиловыми нуклеотидами, флавинами), или неорганическими (например, атомами металлов – железа, магния, кобальта, меди, цинка, молибдена и т. п.).

Не все необходимые коферменты могут синтезироваться организмами и потому должны поступать с пищей. Отсутствие витаминов в пище человека и животных служит причиной потери или снижения активности тех ферментов, в состав которых они входят. В отличие от белковой части органические и неорганические коферменты очень стойкие к неблагоприятным условиям (высокой или низкой температурам, излучению и т.п.) и могут отделяться от апофермента.

Характеризуются ферменты высокой специфичностью: могут превращать лишь соответствующие субстраты и катализировать лишь определенные реакции одного типа. Определяет ее белковый компонент, но не вся его молекула, а лишь ее небольшой участок – активный центр . Структура его отвечает химическому строению веществ, которые вступают в реакцию. Для ферментов характерно пространственное соответствие между субстратом и активным центром. Они подходят друг другу, как ключ замку. Активных центров может быть несколько в одной молекуле фермента. Активный центр, то есть место соединения с другими молекулами, есть не только у ферментов, а и у некоторых других белков (гем в активных центрах миоглобина и гемоглобина). Протекают ферментативные реакции в виде последовательных этапов – от нескольких до десятков.

Активность сложных ферментов проявляется лишь тогда, когда белковая часть соединяется с небелковой. Также их активность проявляется лишь при определенных условиях: температуры, давления, pH среды и т. п. Ферменты разных организмов наиболее активны при температуре, к которой приспособлены эти существа.

Фермент-субстратный комплекс

Связи субстрата с ферментом образуют фермент-субстратный комплекс.

При этом он изменяет не только собственную конформацию, а и конформацию субстрата. Ферментативные реакции могут тормозиться собственными продуктами реакции – при накоплении продуктов скорость реакции снижается. Если продуктов реакции мало, то фермент активируется.

Вещества, проникающие в область активного центра и блокирующие каталитические группы ферментов, называются ингибиторами (от лат. inhibere – сдерживать, останавливаться). Активность ферментов снижают ионы тяжелых металлов (свинец, ртуть и т.п.).

Ферменты уменьшают энергию активации, то есть уровень энергии, необходимый для придания реакционной способности молекулам.

Энергия активации

Энергия активации – это энергия, которая расходуется на разрыв определенной связи для химического взаимодействия двух соединений. Ферменты имеют определенное расположение в клетке и организме в целом. В клетке ферменты содержатся в определенных ее частях. Многие из них связаны с мембранами клеток или отдельных органелл: митохондрий, пластид и т. п.

Биосинтез ферментов организмы способны регулировать. Это позволяет поддерживать относительно постоянный их состав при значительных изменениях условий окружающей среды и частично видоизменять ферменты в ответ на такие изменения. Действие разных биологически активных веществ–гормонов, лекарственных препаратов, стимуляторов роста растений, ядов и т. п. – заключается в том, что они могут стимулировать или подавлять тот или иной ферментативный процесс.

Некоторые ферменты принимают участие в активном транспорте веществ через мембраны.

Для названий большинства ферментов характерен суффикс -аз- . Его прибавляют к названию субстрата, с которым взаимодействует фермент. Например, гидролазы – катализируют реакции расщепления сложных соединений на мономеры за счет присоединения молекулы воды в месте разрыва химической связи молекулах белков, полисахаридов, жиров; оксидредуктазы – ускоряют окислительно-восстановительные реакции (перенесение электронов или протонов); изомеразы – способствуют внутренней молекулярной перестройке (изомеризации), преобразованию изомеров и т. п.

Ферменты – это особый вид протеинов, которым природой отведена роль катализаторов разных химических процессов.

Этот термин постоянно на слуху, правда, далеко не все понимают, что такое фермент или энзим, какие функции выполняет это вещество, а также чем отличаются ферменты от энзимов и отличаются ли вообще. Все это сейчас и узнаем.

Без этих веществ ни люди, ни животные не смогли бы переваривать пищу. А впервые к применению ферментов в быту человечество прибегло более 5 тысяч лет тому назад, когда наши предки научились хранить молоко в «посуде» из желудков животных. В таких условиях под воздействием сычужного фермента превращалось в сыр. И это только один из примеров работы энзима в качестве катализатора, ускоряющего биологические процессы. Сегодня ферменты незаменимы в промышленности, они важны для производства , кожи, текстиля, спирта и даже бетона. В моющих средствах и стиральных порошках также присутствуют эти полезные вещества – помогают выводить пятна при низких температурах.

История открытия

Энзим в переводе с греческого означает «закваска». А открытию этого вещества человечество обязано голландцу Яну Баптисту Ван-Гельмонту, жившему в XVI веке. В свое время он весьма заинтересовался спиртовым брожением и в ходе исследования нашел неизвестное вещество, ускоряющее этот процесс. Голландец назвал его fermentum, что в переводе означает «брожение». Затем, почти тремя веками позже, француз Луи Пастер, также наблюдая за процессами брожения, пришел к выводу, что ферменты – не что иное, как вещества живой клетки. А через некоторое время немец Эдуард Бухнер добыл фермент из дрожжей и определил, что это вещество не является живым организмом. Он также дал ему свое название – «зимаза». Еще несколькими годами позже другой немец Вилли Кюне предложил все белковые катализаторы разделить на две группы: ферменты и энзимы. Причем вторым термином он предложил называть «закваску», действия которой распространяются вне живых организмов. И лишь 1897 год положил конец всем научным спорам: оба термины (энзим и фермент) решено использовать как абсолютные синонимы.

Структура: цепь из тысяч аминокислот

Все ферменты являются белками, но не все белки – ферменты. Как и другие протеины, энзимы состоят из . И что интересно, на создание каждого фермента уходит от ста до миллиона аминокислот, нанизанных, словно жемчуг на нить. Но эта нить не бывает ровной – обычно изогнута в сотни раз. Таким образом, создается трехмерная уникальная для каждого фермента структура. Меж тем, молекула энзима – сравнительно крупное образование, и лишь небольшая часть его структуры, так называемый активный центр, участвует в биохимических реакциях.

Каждая аминокислота соединена с другой определенным типом химической связи, а каждый фермент имеет свою уникальную последовательность аминокислот. Для создания большинства из них используются примерно по 20 видов. Даже незначительные изменения последовательности аминокислот могут кардинально менять внешний вид и «таланты» фермента.

Биохимические свойства

Хотя при участии ферментов в природе происходит огромное количество реакций, но все они могут быть разделены на 6 категорий. Соответственно, каждая из этих шести реакций протекает под влиянием определенного типа ферментов.

Реакции при участии энзимов:

  1. Окисление и восстановление.

Ферменты, участвующие в этих реакциях, называются оксидоредуктазами. В качестве примера можно вспомнить как, алкогольдегидрогеназы преобразуют первичные спирты в альдегид.

  1. Реакция переноса группы.

Ферменты, благодаря которым происходят эти реакции, называются трансферазами. Они обладают умением перемещать функциональные группы от одной молекулы к другой. Так происходит, например, когда аланинаминотрансферазы перемещают альфа-аминогруппы между аланином и аспартатом. Также трансферазы перемещают фосфатные группы между АТФ и другими соединениями, а из остатков создают .

  1. Гидролиз.

Гидролазы, участвующие в реакции, умеют разрывать одинарные связи, добавляя элементы воды.

  1. Создание или удаление двойной связи.

Этот вид реакций негидролитическим путем происходит при участии лиазы.

  1. Изомеризация функциональных групп.

Во многих химических реакциях положение функциональной группы изменяется в пределах молекулы, но сама молекула состоит из того же количества и типов атомов, что были до начала реакции. Иными словами, субстрат и продукт реакции являются изомерами. Такого типа трансформации возможны под влиянием ферментов изомеразы.

  1. Образование одинарной связи с устранением элемента воды.

Гидролазы разрушают связь, добавляя в молекулу элементы воды. Лиазы осуществляют обратную реакцию, удаляя водную часть из функциональных групп. Таким образом, создают простую связь.

Как работают в организме

Ферменты ускоряют практически все химические реакции, происходящие в клетках. Они имеют жизненно важное значение для человека, облегчают пищеварение и ускоряют метаболизм.

Некоторые из этих веществ помогают разрушать слишком большие молекулы на более мелкие «куски», которые организм сможет переварить. Другие наоборот связывают мелкие молекулы. Но ферменты, говоря научным языком, обладают высокой селективностью. Это значит, что каждое из этих веществ способно ускорять только определенную реакцию. Молекулы, с которыми «работают» ферменты, называются субстратами. Субстраты в свою очередь создают связь с частью фермента, именуемой активным центром.

Существуют два принципа, объясняющие специфику взаимодействия ферментов и субстратов. В так называемой модели «ключ-замок» активный центр фермента занимает в субстрате место строго определенной конфигурации. Согласно другой модели, оба участника реакции, активный центр и субстрат, меняют свои формы, чтобы соединиться.

По какому бы принципу ни происходило взаимодействие результат всегда одинаковый – реакция под воздействием энзима протекает во много раз быстрее. Вследствие такого взаимодействия «рождаются» новые молекулы, которые потом отделяются от фермента. А вещество-катализатор продолжает выполнять свою работу, но уже при участии других частиц.

Гипер- и гипоактивность

Бывают случаи, когда энзимы выполняют свои функции с неправильной интенсивностью. Чрезмерная активность вызывает чрезмерное формирование продукта реакции и дефицит субстрата. В результате – ухудшение самочувствия и серьезные болезни. Причиной гиперактивности энзима может быть как генетическое нарушение, так и избыток витаминов или , используемых в реакции.

Гипоактивность ферментов может даже стать причиной смерти, когда, например, энзимы не выводят из организма токсины либо возникает дефицит АТФ. Причиной такого состояния также могут быть мутированные гены или, наоборот, гиповитаминоз и дефицит других питательных веществ. Кроме того, пониженная температура тела аналогично замедляет функционирование энзимов.

Катализатор и не только

Сегодня можно часто услышать о пользе ферментов. Но что такое эти вещества, от которых зависит работоспособность нашего организма?

Энзимы – это биологические молекулы, жизненный цикл которых не определяется рамками от рождения и смерти. Они просто работают в организме до тех пор, пока не растворятся. Как правило, это происходит под воздействием других ферментов.

В процессе биохимической реакции они не становятся частью конечного продукта. Когда реакция завершена, фермент покидает субстрат. После этого вещество готово снова приступить к работе, но уже на другой молекуле. И так продолжается столько, сколько необходимо организму.

Уникальность ферментов в том, что каждый из них выполняет только одну, ему отведенную функцию. Биологическая реакция происходит только тогда, когда фермент находит правильный для него субстрат. Это взаимодействие можно сравнить с принципом работы ключа и замка – только правильно подобранные элементы смогут «сработаться». Еще одна особенность: они могут работать при низких температурах и умеренном рН, а в роли катализаторов являются более стабильными, чем любые другие химические вещества.

Ферменты в качестве катализаторов ускоряют процессы метаболизма и другие реакции.

Как правило, эти процессы состоят из определенных этапов, каждый из которых требует работы определенного энзима. Без этого цикл преобразования или ускорения не сможет завершиться.

Пожалуй, из всех функций ферментов наиболее известна – роль катализатора. Это значит, что энзимы комбинируют химические реагенты таким образом, чтобы снизить энергетические затраты, необходимые для более быстрого формирования продукта. Без этих веществ химические реакции протекали бы в сотни раз медленнее. Но на этом способности энзимов не исчерпываются. Все живые организмы содержат энергию, необходимую им для продолжения жизни. Аденозинтрифосфат, или АТФ, это своего рода заряженная батарейка, которая снабжает клетки энергией. Но функционирование АТФ невозможно без ферментов. И главный энзим, производящий АТФ, – синтаза. Для каждой молекулы глюкозы, которая трансформируется в энергию, синтаза производит около 32-34 молекул АТФ.

Помимо этого, энзимы (липаза, амилаза, протеаза) активно применяются в медицине. В частности, служат компонентом ферментативных препаратов, таких как «Фестал», «Мезим», «Панзинорм», «Панкреатин», применяемых для лечения несварения желудка. Но некоторые энзимы способны также влиять на кровеносную систему (растворяют тромбы), ускорять заживление гнойных ран. И даже в противораковой терапии также прибегают к помощи ферментов.

Факторы, определяющие активность энзимов

Поскольку энзим способен ускорять реакции во много раз, его активность определяется так называемым числом оборотов. Этот термин обозначает количество молекул субстрата (реагирующего вещества), которую способна трансформировать 1 молекула фермента за 1 минуту. Однако существует ряд факторов, определяющих скорость реакции:

  1. Концентрация субстрата.

Увеличение концентрации субстрата ведет к ускорению реакции. Чем больше молекул действующего вещества, тем быстрее протекает реакция, поскольку задействовано больше активных центров. Однако ускорения возможно только до тех пор, пока не задействуются все молекулы фермента. После этого, даже повышение концентрации субстрата не приведет к ускорению реакции.

  1. Температура.

Обычно повышение температуры ведет к ускорению реакций. Это правило работает для большинства ферментативных реакций, но только до тех пор, пока температура не поднимется выше 40 градусов по Цельсию. После этой отметки скорость реакции, наоборот, начинает резко снижаться. Если температура опустится ниже критической отметки, скорость ферментативных реакций повысится снова. Если температура продолжает расти, ковалентные связи рушатся, а каталитическая активность фермента теряется навсегда.

  1. Кислотность.

На скорость ферментативных реакций также влияет показатель рН. Для каждого фермента существует свой оптимальный уровень кислотности, при котором реакция проходит наиболее адекватно. Изменение уровня рН сказывается на активности фермента, а значит, и скорости реакции. Если изменения слишком велики, субстрат теряет способность связываться с активным ядром, а энзим больше не может катализировать реакцию. С восстановлением необходимого уровня рН, активность фермента также восстанавливается.

Ферменты, присутствующие в человеческом организме, можно разделить на 2 группы:

  • метаболические;
  • пищеварительные.

Метаболические «работают» над нейтрализацией токсических веществ, а также способствуют выработке энергии и белков. Ну и, конечно, ускоряют биохимические процессы в организме.

За что отвечают пищеварительные – понятно из названия. Но и здесь срабатывает принцип селективности: определенный тип ферментов влияет только на один вид пищи. Поэтому для улучшения пищеварения можно прибегнуть к маленькой хитрости. Если организм плохо переваривает что-то из еды, значит надо дополнить рацион продуктом, содержащим фермент, который способен расщепить трудно перевариваемую пищу.

Пищевые ферменты – катализаторы, которые расщепляют продукты питания до состояния, в котором организм способен поглощать из них полезные вещества. Пищеварительные энзимы бывают нескольких типов. В человеческом организме разные виды ферментов содержатся на разных участках пищеварительного тракта.

Ротовая полость

На этом этапе на пищу воздействует альфа-амилаза. Она расщепляет углеводы, крахмалы и глюкозу, которые содержатся в картофеле, фруктах, овощах и других продуктах питания.

Желудок

Здесь пепсин расщепляет белки до состояния пептидов, а желатиназа – желатин и коллаген, содержащиеся в мясе.

Поджелудочная железа

На этом этапе «работают»:

  • трипсин – отвечает за расщепление белков;
  • альфа-химотрипсин – помогает усвоению протеинов;
  • эластазы – расщепляют некоторые виды белков;
  • нуклеазы – помогают расщеплять нуклеиновые кислоты;
  • стеапсин – способствует усвоению жирной пищи;
  • амилаза – отвечает за усвоение крахмалов;
  • липаза – расщепляет жиры (липиды), содержащиеся в молочных продуктах, орехах, маслах и мясе.

Тонкая кишка

Над пищевыми частицами «колдуют»:

  • пептидазы – расщепляют пептидные соединения к уровню аминокислот;
  • сахараза – помогает усваивать сложные сахара и крахмалы;
  • мальтаза – расщепляет дисахариды к состоянию моносахаридов (солодовый сахар);
  • лактаза – расщепляет лактозу (глюкозу, содержащуюся в молочных продуктах);
  • липаза – способствует усвоению триглицеридов, жирных кислот;
  • эрепсин – воздействует на протеины;
  • изомальтаза – «работает» с мальтозой и изомальтозой.

Толстый кишечник

Здесь функции ферментов выполняют:

  • кишечная палочка – отвечает за переваривание ;
  • лактобактерии – влияют на лактозу и некоторые другие углеводы.

Кроме названных энзимов, существуют еще:

  • диастаза – переваривает растительный крахмал;
  • инвертаза – расщепляет сахарозу (столовый сахар);
  • глюкоамилаза – превращает в глюкозу;
  • альфа-галактозидаза – способствует перевариванию бобов, семян, соевых продуктов, корневых овощей и листовых;
  • бромелайн – фермент, полученный из , способствует расщеплению разных видов белков, эффективен при разных уровнях кислотности среды, обладает противовоспалительными свойствами;
  • папаин – фермент, выделенный из сырой папайи, способствует расщеплению мелких и крупных протеинов, эффективен в широком диапазоне субстратов и кислотности.
  • целлюлаза – расщепляет целлюлозу, растительные волокна (в человеческом организме не обнаружена);
  • эндопротеаза – расщепляет пептидные связи;
  • экстракт бычьей желчи – энзим животного происхождения, стимулирует моторику кишечника;
  • панкреатин – фермент животного происхождения, ускоряет переваривание и белков;
  • панкрелипаза – животный фермент, способствует усвоению

    Ферментированные продукты являются практически идеальным источником полезных бактерий, необходимых для правильного пищеварения. И в то время, когда аптечные пробиотики «работают» только в верхнем отделе пищеварительной системы и часто не добираются до кишечника, эффект от ферментативных продуктов ощущается во всем желудочно-кишечном тракте.

    Например, абрикосы содержат в себе смесь полезных энзимов, в том числе инвертазу, которая отвечает за расщепление глюкозы и способствует быстрому высвобождению энергии.

    Натуральным источником липазы (способствует более быстрому перевариванию липидов) может послужить . В организме это вещество производит поджелудочная железа. Но дабы облегчить жизнь этому органу, можно побаловать себя, например, салатом с авокадо – вкусно и полезно.

    Кроме того, что , пожалуй, самый известный источник , он также поставляет в организм амилазу и мальтазу. Амилаза содержится также в хлебе, крупах. Мальтаза способствует расщеплению мальтозы, так называемого солодового сахара, который в обилии представлен в пиве и кукурузном сиропе.

    Другой экзотический фрукт – ананас содержит в себе целый набор энзимов, в том числе и бромелайн. А он, согласно некоторым исследованиям, еще и обладает противораковыми и противовоспалительными свойствами.

    Экстремофилы и промышленность

    Экстремофилы – это вещества, способны сохранять жизнедеятельность в экстремальных условиях.

    Живые организмы, а также ферменты, позволяющие им функционировать, были найдены в гейзерах, где температура близка к точке кипения, и глубоко во льдах, а также в условиях крайней солености (Долина Смерти в США). Кроме того, ученые находили энзимы, для которых уровень рН, как оказалось, также не принципиальное требование для эффективной работы. Исследователи с особым интересом изучают ферменты-экстремофилы, как вещества, которые могут быть широко использованы в промышленности. Хотя и сегодня энзимы уже нашли свое применение в индустрии как биологически и экологически чистые вещества. К применению энзимов прибегают в пищевой промышленности, косметологии, производстве бытовой химии.

    Извозчикова Нина Владиславовна

    Специальность: инфекционист, гастроэнтеролог, пульмонолог .

    Общий стаж: 35 лет .

    Образование: 1975-1982, 1ММИ, сан-гиг, высшая квалификация, врач-инфекционист .

    Научная степень: врач высшей категории, кандидат медицинских наук.

© 2024 asm59.ru
Беременность и роды. Дом и семья. Досуг и отдых