И. Проверка домашнего задания

ПРЕОБРАЗОВАНИЕ ПОДОБИЯ

Преобразование фигуры F в фигуру F" называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз (рис. 1). Это значит, что если произвольные точки X, Y фигуры F при преобразовании подобия переходят в точки X", Y" фигуры F", то X"Y" = k-XY, причем число k -- одно и то же для всех точек X, Y. Число k называется коэффициентом подобия. При k = l преобразование подобия, очевидно, является движением.

Пусть F -- данная фигура и О -- фиксированная точка (рис. 2). Проведем через произвольную точку X фигуры F луч ОХ и отложим на нем отрезок ОХ", равный k?OX, где k -- положительное число. Преобразование фигуры F, при котором каждая ее точка X переходит в точку X", построенную указанным способом, называется гомотетией относительно центра О. Число k называется коэффициентом гомотетии, фигуры F и F" называются гомотетичными.

Теорема 1. Гомотетия есть преобразование подобия

Доказательство. Пусть О -- центр гомотетии, k -- коэффициент гомотетии, X и Y - две произвольные точки фигуры (рис.3)


Рис.3

При гомотетии точки X и Y переходят в точки X" и Y" на лучах ОХ и OY соответственно, причем OX" = k?OX, OY" = k?OY. Отсюда следуют векторные равенства ОХ" = kOX, OY" = kOY.

Вычитая эти равенства почленно, получим: OY"-OX" = k (OY- OX).

Так как OY" - OX"= X"Y", OY -OX=XY, то Х" Y" = kХY. Значит, /X"Y"/=k /XY/, т.e. X"Y" = kXY. Следовательно, гомотетия есть преобразование подобия. Теорема доказана.

Преобразование подобия широко применяется на практике при выполнении чертежей деталей машин, сооружений, планов местности и др. Эти изображения представляют собой подобные преобразования воображаемых изображений в натуральную величину. Коэффициент подобия при этом называется масштабом. Например, если участок местности изображается в масштабе 1:100, то это значит, что одному сантиметру на плане соответствует 1 м на местности.

Задача. На рисунке 4 изображен план усадьбы в масштабе 1:1000. Определите размеры усадьбы (длину и ширину).

Решение. Длина и ширина усадьбы на плане равны - 4 см и 2,7 см. Так как план выполнен в масштабе 1:1000, то размеры усадьбы равны соответственно 2,7 х1000 см = 27 м, 4х100 см = 40 м.

СВОЙСТВА ПРЕОБРАЗОВАНИЯ ПОДОБИЯ

Так же как и для движения, доказывается, что при преобразовании подобия три точки А, В, С, лежащие на одной прямой, переходят в три точки А 1 , В 1 , С 1 , также лежащие на одной прямой. Причем если точка В лежит между точками А и С, то точка В 1 лежит между точками А 1 и С 1 . Отсюда следует, что преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки.

Докажем, что преобразование подобия сохраняет углы между полупрямыми.

Действительно, пусть угол ABC преобразованием подобия с коэффициентом k переводится в угол А 1 В 1 С 1 (рис. 5). Подвергнем угол ABC преобразованию гомотетии относительно его вершины В с коэффициентом гомотетии k. При этом точки А и С перейдут в точки А 2 и С 2 . Треугольники А 2 ВС 2 и А 1 В 1 С 1 равны по третьему признаку. Из равенства треугольников следует равенство углов А 2 ВС 2 и А 1 В 1 С 1 . Значит, углы ABC и А 1 В 1 С 1 равны, что и требовалось доказать.

Подобием μ называется такое преобразование плоскости, которое расстояние между любыми двумя точками изменяет в r>0 раз: .

При условии r=1 это движение.

Гомотетия с коэффициентом также является частным случаем подобия .

Теорема : Если даны прямоугольные декартовы реперы , то единственное подобие μ, которое осуществляет перевод

Как и для движений можно показать, что и

Из этих формул следует, что всякое подобие можно представить в виде произведения гомотетии и движения .

Из теоремы следует, что:

Прямые переходят в прямые,

Углы между линиями сохраняются,

Все расстояния изменяются в r раз.

Теорема: множество преобразований подобия (на плоскости) образуют группу.

Группу подобия G(μ) называют метрической группой (группой Клейна), которая позволяет измерять расстояния.

Подгруппой является группа движений 1 рода (не изменяет ориентацию фигуры: параллельный перенос, поворот, центральная симметрия и тождественное преобразование).

Подобие является частным случаем отношения эквивалентности:

Подобие можно разбить на два класса:

Сохраняет ориентацию – 1 рода (образует группу);

Изменяет ориентацию – 2 рода (не образует группу).

При подобии площади фигур изменяются в r 2 раз, где r – коэффициент подобия.

Применение к решению задач:

Построить треугольник по двум углам и периметру.

Используем свойство подобия: линейные размеры подобных фигур соотносятся с коэффициентом подобия r.

1.Строим треугольник, у которого:

Основание равно нашему периметру,

Углы при основании равны нашим углам (получим треугольник, подобный данному – согласно 2 признаку подобия);

2. Можно определить новый периметр K, исходный периметр и сторона AB известны.

Так как треугольники подобны, то . Согласно теореме Фалеса найдем .

Аналогично найдем .

3. Откладываем от точки и получаем , аналогично от точки и получаем . Строим углы a и b, и получаем нужный нам треугольник .

Геометрия

Подобие фигур

Свойства подобных фигур

Теорема. Когда фигура подобна фигуре , а фигура - фигуре , то фигуры и подобные.
Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. Например, в подобных треугольниках ABC и :
; ; ;
.
Признаки подобия треугольников
Теорема 1. Если два угла одного треугольника соответственно равны двум углам второго треугольника, то такие треугольники подобны.
Теорема 2. Если две стороны одного треугольника пропорциональны двум сторонам второго треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Теорема 3. Если стороны одного треугольника пропорциональны сторонам второго треугольника, то такие треугольники подобны.
Из этих теорем вытекают факты, которые являются полезными для решения задач.
1. Прямая, параллельная стороне треугольника и пересекающая две другие его стороны, отсекает от него треугольник, подобный данному.
На рисунке .

2. У подобных треугольников соответствующие элементы (высоты, медианы, биссектрисы и т.д.) относятся как соответствующие стороны.
3. У подобных треугольников периметры относятся как соответствующие стороны.
4. Если О - точка пересечения диагоналей трапеции ABCD , то .
На рисунке в трапеции ABCD: .

5. Если продолжение бічих сторон трапеции ABCD пересекаются в точке K , то (см. рисунок).
.
Подобие прямоугольных треугольников
Теорема 1. Если прямоугольные треугольники имеют равный острый угол, то они подобны.
Теорема 2. Если два катеты одного прямоугольного треугольника пропорциональны двум катетам второго прямоугольного треугольника, то эти треугольники подобны.
Теорема 3. Если катет и гипотенуза одного прямоугольного треугольника пропорциональны катету и гипотенузе второго прямоугольного треугольника, то такие треугольники подобны.
Теорема 4. Высота прямоугольного треугольника, проведенная из вершины прямого угла, разбивает треугольник на два прямоугольных треугольника, подобные данному.
На рисунке .

Из подобия прямоугольных треугольников вытекает такое.
1. Катет прямоугольного треугольника является средним пропорциональным между гипотенузой и проекцией этого катета на гипотенузу:
; ,
или
; .
2. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу:
, или .
3. Свойство биссектрисы треугольника:
биссектриса треугольника (произвольного) делит противоположную сторону треугольника на отрезки, пропорциональные двум другим сторонам.
На рисунке в BP - биссектриса .
, или .

Сходство равносторонних и равнобедренных треугольников
1. Все равносторонние треугольники подобные.
2. Если равнобедренные треугольники имеют равные углы между боковыми сторонами, то они подобны.
3. Если равнобедренные треугольники имеют пропорциональные основание и боковую сторону, то они подобны.

Презентация по геометрии на тему «Подобие пространственных фигур» Подготовил Ученик 10 «Б» класса Куприянов Артем

Преобразование фигуры F называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз, т. е. для любых двух точек X и У фигуры F и точек X", У фигуры F", в которые они переходят, X"Y" = k * XY . Определение: Преобразование подобия в пространстве Фигура называется подобной фигуре F , если существует подобие пространства, отображающая фигуру F на фигуру Определение:

Свойства подобия 1) При подобии прямые переходят в прямые, плоскости, отрезки и лучи отображаются также в плоскости, отрезки и лучи соответственно. 2) При подобии сохраняется величина угла (плоского и двухгранного), параллельные прямые(плоскости) отображаются как параллельные прямые (плоскости), перпендикулярная прямая и плоскость – на перпендикулярные прямую и плоскость. 3) Из сказанного выше следует, что подобном преобразовании подобия пространства образом любой фигуры является «похожая» на нее фигура, то есть фигура, имеющая такую же форму, что и отображаемая (данная) фигура, но отличающаяся от данной лишь своими «размерами»

Основные свойства подобных фигур Свойство транзитивности. Если фигура F1 подобна фигуре F2 и фигура F2 подобна фигуре F3 , то фигура F1 подобна фигуре F3. Свойство симметричности. Если фигура F1 подобна фигуре F2 , то и фигура F2 подобна фигуре F1 Свойство рефлективности. Фигура подобна сама себе при коэффициенте подобия, равном 1 (при k=1)

Замечательным является тот факт, что все фигуры одного и того же класса обладают одними и теми же свойствами с точностью до подобия (имеют одинаковую форму, но отличаются размерами: отношение площадей подобных фигур равно квадрату коэффициента подобия, а отношение объемов – кубу коэффициента подобия) Три свойства отношения подобия фигур позволяют разбить множество всех фигур пространства на подмножества – попарно непересекающиеся классы подобных между собой фигур: каждый класс представляет собой множество всех подобных друг другу фигур пространства. При этом любая фигура пространства принадлежит одному и только одному из этих классов. Множество кубов Пример: Множество правильных тетраэдров

Гомотетия - один из видов преобразований подобия. Определение. Гомотетией пространства с центром О и коэффициентом называется преобразование пространства, при котором любая точка М отображается на такую точку М ’ , что = k Гомотетию с центром О и коэффициентом k обозначают При k=1 гомотетия является тождественным преобразованием, а при k=-1 – центральной симметрией с центром а центре гомотетии

Примеры гомотетии с центром в точке О

Формулы гомотетии с центром в начале координат и коэффициентом k Свойства гомотетии 1) При гомотетии величина плоского и двухгранного угла сохраняется 2) При гомотетии с коэффициентом k расстояние между точками изменяется в 3) Отношение площадей гомотетических фигур равно квадрату коэффициента гомотетии. 4) Отношение объемов гомотетических фигур равно модулю куба коэффициента гомотетии 5) Гомотетия с положительным коэффициентом не меняет ориентации пространства, а с отрицательным коэффициентом – меняет.

6 свойство (с доказательством) Преобразование гомотетии в пространстве переводит любую плоскость, не проходящую через центр гомотетии, в параллельную плоскость (или в себя при k=1). Действительно, пусть О - центр гомотетии и α - любая плоскость, не проходящая через О. Возьмем любую прямую АВ в плоскости α . Преобразование гомотетии переводит точку А в точку А" на луче OA , а точку В в точку В ’ на луче OB, причем - коэффициент гомотетии. Отсюда следует подобие треугольников АОВ и А"ОВ ’ . Из подобия треугольников следует равенство соответственных углов ОАВ и ОА"В" , а значит, параллельность прямых АВ и А"В". Возьмем теперь другую прямую АС в плоскости. Она при гомотетии перейдет в параллельную прямую А"С". При рассматриваемой гомотетии плоскость перейдет в плоскость " проходящую через прямые А"В", А"С. Так как А"В‘ ll АВ и А ’ С ’ ll АС, то по признаку параллельности плоскостей плоскости и параллельны, что и требовалось доказать. Дано α O – центр гомотетии Доказать α II α ’ Доказательство

Кино в кинотеатрах

Тема урока: Преобразование подобия. Подобные фигуры.Гомотетия

Тип урока: урок сообщения и усвоения новых знаний.

Цели урока:

Образовательные:

    дать понятие преобразования подобия фигур;

    свойства преобразования подобия;

Развивающие:

1 .Развивать практические навыки применения подобия фигур при решении задач.

2. Создавать условия для реальной оценки у обучающихся своих знаний и возможностей.

Воспитательные:

1 .Воспитание навыков контроля и взаимоконтроля.

2.Воспитание аккуратности при выполнении чертежей и записей

Ход урока.

1. Организация на урок. подготовка учащихся к восприятию новых знаний, сообщение темы и целей урока.

2. Постановка цели:

знать : определение и свойства преобразования подобия, гомотетия

уметь: строить подобные и гомотетичные фигуры с данным коэффициентом подобия

3. Актуализация прежних знаний

Повторение пройденного материала, тесно связанного с изучением нового (фронтально устно, МД) Работа у доски

Карточка № 1

Построить фигуру, в которую переходит  АВС, при параллельном переносе на вектор

Карточка № 2.

Построить фигуру, в которую переходит отрезок АВ при повороте около точки О на угол 90 о

К арточка № 3

Построить фигуру, в которую переходит  АВС, при симметрии относительно точки О

Карточка № 4

Построить фигуру, в которую переходит фигура F при симметрии относительно прямой у

3) Проверка выполнения заданий у доски . Еще раз подчеркнуть, что любое движение сохраняет расстояние между точками, а поэтому фигуры при движении переходят в равные фигуры.

Определите вид преобразований:

Что общего между этими преобразованиями?

Свойства движения:

    При движении прямая переходит в прямую, луч – в луч, отрезок – в отрезок.

    Сохраняются расстояния между точками.

    Сохраняются углы между лучами.

Следствие: При движении фигура переходит в равную ей фигуру!!!

4. Объяснение нового материала (лекция с опорным конспектом, СР с учебником -конспектирование)

Сначала выполните следующее задание: начертите у себя в тетрадях, а мы на доске, схематично план класса.

Почему стол на плане изображен прямоугольником(а не кругом или

квадратом)?

Чем отличаются и что имеют общего стол на планах на доске и в тетрадях? (отличаются размерами, но имеют одну и ту же форму).

В жизни часто встречаются предметы, имеющие одинаковую форму, но различные размеры. Таковы, например, фотографии одного и того же лица, изготовленные с одного негатива в различных размерах, планы здания или целого города, местности, вычерченные в различных масштабах.

Такие фигуры принято называть подобными , а преобразование, переводящее одну фигуру F в подобную фигуру F, называют преобразованием подобия.

Демонстрируются плакаты с изображением фигур, имеющих одинаковую форму, но различные размеры. Учащимся предлагается привести примеры таких предметов из жизни.

Для того, чтобы дать строгое математическое определение преобразования подобия надо выделить свойства этого преобразования.

Перед каждым учащимся лежит карточка (рис. 1)


Даны подобные фигуры F и F. Измерьте и сравните расстояния АВ и АВ, ВС и В 1 С 1 и т.д. Какую можно заметить зависимость между расстояниями у подобных фигур? (Все расстояния изменяются в одно и то же число раз, на чертеже в 2 раза).

    Преобразование при котором фигура сохраняет вид, но изменяет размеры называется преобразованием подобия

т.е. ХУ" = к·ХУ; АВ= к ·АВ.

Число к называется коэффициентом подобия.

Преобразование подобия имеет широкое практическое применение, в частности, при выполнении деталей машин, составлении карт и планов местности. При этом коэффициент подобия называется масштабом.

Частным случаем преобразования подобия является преобразование гомотетии .

Пусть F данная фигура, О – фиксированная точка, к – положительное число. Через произвольную точку Х фигуры F проведем луч ОХ и отложим на нем отрезок ОХ" равный к ·ОХ.

    Любой точке Х на плоскости будет соответствовать точка Х" удовлетворяющая равенству ОХ"= к ОХ,преобразование называется гомотетией, относительно центра О с коэффициентом к.

Число к называется коэффициентом гомотетии , а фигуры F и F называются гомотетичными.

-

Для фигур F и F" укажите гомотетичные точки. Как располагается любая пара точек и центр О? (На одном луче).

Какая особенность в расположении гомотетичных отрезков? (Они параллельны ).

Всегда ли подобные фигуры гомотетичны? (Обратиться к карточке рис.2)

А всегда ли гомотетичные фигуры подобны?

Ответ на последний вопрос дает теорема: Гомотетия есть преобразование подобия.

Составьте постер: Преобразование подобия (свойства)

    расстояние между любыми двумя точками увеличиваются или уменьшаются в одно тоже число раз

    соответствующие стороны подобных фигур параллельны

    При гомотетии сохраняются только углы!!!

    центр и гомотетичные точки расположены на одной прямой

5,Проверка понимания нового материала :

    Построить точку (отрезок, фигуру) гомотетичную данной, если коэффициент гомотетии равен к.

) к = 2 б) к = 3 в) к = 2

Практическая работа на карточках в 2 вариантах :

Вариант 1.

Дан прямоугольник и точка О. Построить фигуру, гомотетичную данному прямоугольнику относительно центра О с коэффициентом k = -2.


Вариант 2.

Дан квадрат и точка О. Построить фигуру, гомотетичную данному квадрату относительно центра О с коэффициентом k = 0,5.


В зависимости от подготовленности класса, можно организовать обмен карточками между соседями.

6 . Итог урока: (систематизация и обобщение знаний;)

Отметить учащихся, активно работавших на уроке. Сообщить и прокомментировать выставленные оценки

7. Домашнее задание § №

© 2024 asm59.ru
Беременность и роды. Дом и семья. Досуг и отдых