أبسط المعادلات المثلثية للامتحان. كيفية حل المعادلات المثلثية

تتضمن دورة الفيديو "احصل على A" جميع المواضيع اللازمة لاجتياز اختبار الدولة الموحدة في الرياضيات بنجاح مع 60-65 نقطة. أكمل جميع المهام من 1 إلى 13 من امتحان الحالة الموحدة للملف التعريفي في الرياضيات. مناسب أيضًا لاجتياز امتحان الدولة الموحدة الأساسي في الرياضيات. إذا كنت ترغب في اجتياز امتحان الدولة الموحدة برصيد 90-100 نقطة، فأنت بحاجة إلى حل الجزء الأول في 30 دقيقة وبدون أخطاء!

دورة تحضيرية لامتحان الدولة الموحدة للصفوف 10-11 وكذلك للمعلمين. كل ما تحتاجه لحل الجزء الأول من امتحان الدولة الموحدة في الرياضيات (أول 12 مسألة) والمسألة 13 (علم المثلثات). وهذا أكثر من 70 نقطة في امتحان الدولة الموحدة، ولا يستطيع طالب 100 نقطة ولا طالب العلوم الإنسانية الاستغناء عنها.

كل النظرية اللازمة. الحلول السريعة والمزالق وأسرار امتحان الدولة الموحدة. تم تحليل جميع المهام الحالية للجزء الأول من بنك مهام FIPI. تتوافق الدورة تمامًا مع متطلبات امتحان الدولة الموحدة 2018.

تحتوي الدورة على 5 مواضيع كبيرة، مدة كل منها 2.5 ساعة. يتم تقديم كل موضوع من الصفر، ببساطة ووضوح.

المئات من مهام امتحان الدولة الموحدة. المسائل اللفظية ونظرية الاحتمالات. خوارزميات بسيطة وسهلة التذكر لحل المشكلات. الهندسة. النظرية والمواد المرجعية وتحليل جميع أنواع مهام امتحان الدولة الموحدة. القياس المجسم. حلول صعبة، أوراق غش مفيدة، تطوير الخيال المكاني. علم المثلثات من الصفر إلى المشكلة 13. الفهم بدلاً من الحشر. تفسيرات واضحة للمفاهيم المعقدة. الجبر. الجذور والقوى واللوغاريتمات والدالة والمشتقات. أساس لحل المشكلات المعقدة للجزء الثاني من امتحان الدولة الموحدة.

المعادلات المثلثية ليست موضوعا سهلا. فهي متنوعة للغاية.) على سبيل المثال، ما يلي:

خطيئة 2 س + cos3x = ctg5x

خطيئة(5س+ط /4) = سرير(2س-ط /3)

sinx + cos2x + tg3x = ctg4x

إلخ...

لكن هذه الوحوش المثلثية (وجميعها) لها ميزتان مشتركتان وإلزاميتان. أولاً - لن تصدق - هناك دوال مثلثية في المعادلات.) ثانياً: تم العثور على جميع التعبيرات ذات x ضمن هذه الوظائف نفسها.وهناك فقط! إذا ظهر X في مكان ما الخارج،على سبيل المثال، الخطيئة2س + 3س = 3،ستكون هذه بالفعل معادلة من النوع المختلط. تتطلب مثل هذه المعادلات نهجًا فرديًا. لن نعتبرهم هنا.

لن نحل المعادلات الشريرة في هذا الدرس أيضًا.) هنا سنتعامل معها أبسط المعادلات المثلثية.لماذا؟ نعم لأن الحل أيتتكون المعادلات المثلثية من مرحلتين. في المرحلة الأولى، يتم اختزال المعادلة الشريرة إلى معادلة بسيطة من خلال مجموعة متنوعة من التحولات. وفي الثانية، تم حل هذه المعادلة الأبسط. لا توجد طريقة أخرى.

لذا، إذا كانت لديك مشاكل في المرحلة الثانية، فإن المرحلة الأولى ليس لها معنى كبير.)

كيف تبدو المعادلات المثلثية الأولية؟

سينكس = أ

كوسكس = أ

تغكس = أ

ctgx = أ

هنا أ يقف على أي رقم. أي.

بالمناسبة، داخل الدالة قد لا يكون هناك X خالص، ولكن نوع من التعبير، مثل:

cos(3x+π /3) = 1/2

إلخ. وهذا يعقد الحياة لكنه لا يؤثر على طريقة حل المعادلة المثلثية.

كيفية حل المعادلات المثلثية؟

يمكن حل المعادلات المثلثية بطريقتين. الطريقة الأولى: استخدام المنطق والدائرة المثلثية. سننظر في هذا المسار هنا. الطريقة الثانية - استخدام الذاكرة والصيغ - سيتم مناقشتها في الدرس التالي.

الطريقة الأولى واضحة وموثوقة ويصعب نسيانها.) إنها جيدة لحل المعادلات المثلثية والمتباينات وجميع أنواع الأمثلة الصعبة غير القياسية. المنطق أقوى من الذاكرة!)

حل المعادلات باستخدام الدائرة المثلثية.

نقوم بتضمين المنطق الأولي والقدرة على استخدام الدائرة المثلثية. لا تعرف كيف؟ ومع ذلك... سيكون لديك صعوبة في علم المثلثات...) ولكن لا يهم. قم بإلقاء نظرة على الدروس "الدائرة المثلثية... ما هي؟" و"قياس الزوايا على الدائرة المثلثية". كل شيء بسيط هناك. بخلاف الكتب المدرسية...)

انت تعرف!؟ وحتى أتقن "العمل العملي مع الدائرة المثلثية"!؟ تهانينا. سيكون هذا الموضوع قريبًا ومفهومًا بالنسبة لك.) الأمر الممتع بشكل خاص هو أن الدائرة المثلثية لا تهتم بالمعادلة التي تحلها. جيب التمام، وجيب التمام، والظل، وظل التمام - كل شيء هو نفسه بالنسبة له. هناك مبدأ حل واحد فقط.

لذا، فإننا نأخذ أي معادلة مثلثية أولية. على الأقل هذا:

كوزكس = 0.5

نحن بحاجة إلى العثور على X. التحدث باللغة البشرية، تحتاج أوجد الزاوية (x) التي جيب تمامها 0.5.

كيف استخدمنا الدائرة سابقًا؟ لقد رسمنا زاوية عليه. بالدرجات أو الراديان. وعلى الفور رأى الدوال المثلثية لهذه الزاوية. الآن دعونا نفعل العكس. لنرسم جيب التمام على الدائرة يساوي 0.5 وعلى الفور سوف نرى ركن. كل ما تبقى هو كتابة الإجابة.) نعم، نعم!

ارسم دائرة وضع علامة على جيب التمام يساوي 0.5. على محور جيب التمام، بطبيعة الحال. مثله:

الآن دعونا نرسم الزاوية التي يعطينا إياها جيب التمام هذا. قم بتمرير مؤشر الماوس فوق الصورة (أو المس الصورة الموجودة على جهازك اللوحي)، و سوف ترىهذه الزاوية بالذات X.

جيب التمام لأي زاوية يساوي 0.5؟

س = ط /3

كوس 60 درجة= كوس( π /3) = 0,5

سوف يضحك بعض الناس متشككين، نعم... مثل، هل كان الأمر يستحق رسم دائرة عندما يكون كل شيء واضحًا بالفعل... يمكنك بالطبع أن تضحك ضحكة مكتومة...) لكن الحقيقة هي أن هذه إجابة خاطئة. أو بالأحرى غير كافية. يدرك خبراء الدائرة أن هناك مجموعة كاملة من الزوايا الأخرى هنا والتي تعطي أيضًا جيب التمام 0.5.

إذا قمت بتشغيل الجانب المتحرك الزراعة العضوية بدوره الكامل، ستعود النقطة A إلى وضعها الأصلي. مع نفس جيب التمام يساوي 0.5. أولئك. سوف تتغير الزاويةبمقدار 360° أو 2π راديان، و جيب التمام - لا.الزاوية الجديدة 60° + 360° = 420° ستكون أيضًا حلاً لمعادلتنا، لأن

ويمكن عمل عدد لا نهائي من هذه الدورات الكاملة... وكل هذه الزوايا الجديدة ستكون حلولاً لمعادلتنا المثلثية. ويجب تدوينهم جميعًا بطريقة أو بأخرى ردًا على ذلك. الجميع.وإلا فلا يعتد بالقرار، نعم...)

يمكن للرياضيات أن تفعل ذلك ببساطة وأناقة. اكتب في إجابة واحدة قصيرة مجموعة لا نهائيةقرارات. إليك ما تبدو عليه معادلتنا:

س = π /3 + 2π ن، ن ∈ ض

سأقوم بفك شفرتها. لا تزال تكتب بشكل هادفإنه أكثر متعة من رسم بعض الحروف الغامضة بغباء، أليس كذلك؟)

π /3 - هذه هي نفس الزاوية التي نحن فيها رأىعلى الدائرة و عازموفقا لجدول جيب التمام.

هي ثورة كاملة بالراديان.

ن - هذا هو عدد الكاملات، أي. جميعدورة في الدقيقة فمن الواضح أن ن يمكن أن تكون مساوية لـ 0، ±1، ±2، ±3.... وهكذا. كما هو موضح بواسطة إدخال قصير:

ن ∈ ض

ن ينتمي ( ) مجموعة من الأعداد الصحيحة ( ز ). بالمناسبة، بدلا من الرسالة ن يمكن استخدام الحروف ك، م، ر إلخ.

هذا الترميز يعني أنه يمكنك أخذ أي عدد صحيح ن . على الأقل -3، على الأقل 0، على الأقل +55. أياً كان ما تريد. إذا قمت باستبدال هذا الرقم في الإجابة، فستحصل على زاوية محددة، والتي ستكون بالتأكيد الحل لمعادلتنا القاسية.)

أو بمعنى آخر، س = ط /3 هو الجذر الوحيد لمجموعة لا نهائية. للحصول على جميع الجذور الأخرى، يكفي إضافة أي عدد من الدورات الكاملة إلى π /3 ( ن ) بالراديان. أولئك. 2πn راديان.

الجميع؟ لا. أنا عمدا إطالة أمد المتعة. لنتذكر بشكل أفضل.) لقد تلقينا جزءًا فقط من إجابات معادلتنا. سأكتب هذا الجزء الأول من الحل مثل هذا:

س 1 = π /3 + 2π n, n ∈ Z

× 1 - ليس جذرًا واحدًا فقط، بل سلسلة كاملة من الجذور، مكتوبة في شكل قصير.

ولكن هناك أيضًا زوايا تعطي أيضًا جيب التمام 0.5!

لنعد إلى صورتنا التي كتبنا منها الإجابة. ها هي:

مرر مؤشر الفأرة فوق الصورة و نحن نرىزاوية أخرى ذلك كما يعطي جيب التمام 0.5.ما رأيك يساوي؟ المثلثان متماثلان... نعم! وهي تساوي الزاوية X ، تأخر فقط في الاتجاه السلبي. هذه هي الزاوية -X. لكننا قمنا بالفعل بحساب x. π /3 أو 60 درجة. لذلك يمكننا أن نكتب بأمان:

س 2 = - ط /3

حسنًا، بالطبع، نضيف جميع الزوايا التي تم الحصول عليها من خلال الثورات الكاملة:

س 2 = - π /3 + 2π n, n ∈ Z

هذا كل شيء الآن.) في الدائرة المثلثية نحن رأى(من يفهم طبعا)) الجميعالزوايا التي تعطي جيب التمام 0.5. وكتبنا هذه الزوايا في صورة رياضية قصيرة. نتج عن الإجابة سلسلتين لا نهائيتين من الجذور:

س 1 = π /3 + 2π n, n ∈ Z

س 2 = - π /3 + 2π n, n ∈ Z

هذا هو الجواب الصحيح.

يأمل، المبدأ العام لحل المعادلات المثلثيةباستخدام دائرة واضحة. نحدد جيب التمام (الجيب، الظل، ظل التمام) من المعادلة المحددة على دائرة، ونرسم الزوايا المقابلة لها ونكتب الإجابة.وبطبيعة الحال، نحن بحاجة إلى معرفة ما هي الزوايا التي نحن فيها رأىعلى الدائرة. في بعض الأحيان لا يكون الأمر واضحًا جدًا. حسنًا، لقد قلت أن المنطق مطلوب هنا.)

على سبيل المثال، دعونا ننظر إلى معادلة مثلثية أخرى:

يرجى الأخذ في الاعتبار أن الرقم 0.5 ليس الرقم الوحيد الممكن في المعادلات!) إن كتابته أكثر ملاءمة بالنسبة لي من الجذور والكسور.

نحن نعمل وفقا للمبدأ العام. نرسم دائرة ونضع علامة (على محور الجيب بالطبع!) 0.5. نرسم جميع الزوايا المقابلة لهذا الجيب مرة واحدة. نحصل على هذه الصورة:

دعونا نتعامل مع الزاوية أولا X في الربع الأول. نتذكر جدول الجيب ونحدد قيمة هذه الزاوية. إنها مسألة بسيطة:

س = ط /6

نتذكر المنعطفات الكاملة ونكتب بضمير مرتاح السلسلة الأولى من الإجابات:

س 1 = π /6 + 2π n, n ∈ Z

تم إنجاز نصف المهمة. لكن الآن علينا أن نحدد الزاوية الثانية...إنها أصعب من استخدام جيب التمام، نعم... لكن المنطق سينقذنا! كيفية تحديد الزاوية الثانية من خلال العاشر؟ نعم سهل! المثلثات الموجودة في الصورة هي نفسها والزاوية الحمراء X يساوي الزاوية X . يتم حسابه فقط من الزاوية π في الاتجاه السلبي. ولهذا السبب هو أحمر.) وللإجابة نحتاج إلى زاوية، تقاس بشكل صحيح، من نصف المحور الموجب OX، أي. من زاوية 0 درجة.

نحرك المؤشر فوق الرسم ونرى كل شيء. أزلت الزاوية الأولى حتى لا أعقد الصورة. الزاوية التي نهتم بها (المرسومة باللون الأخضر) ستكون مساوية لـ:

π - س

× نحن نعرف هذا π /6 . وبالتالي تكون الزاوية الثانية:

π - π /6 = 5π /6

مرة أخرى نتذكر إضافة الثورات الكاملة ونكتب السلسلة الثانية من الإجابات:

× 2 = 5π /6 + 2π n, n ∈ Z

هذا كل شئ. تتكون الإجابة الكاملة من سلسلتين من الجذور:

س 1 = π /6 + 2π n, n ∈ Z

× 2 = 5π /6 + 2π n, n ∈ Z

يمكن حل معادلات الظل وظل التمام بسهولة باستخدام نفس المبدأ العام لحل المعادلات المثلثية. إذا كنت، بالطبع، تعرف كيفية رسم الظل وظل التمام على دائرة مثلثية.

في الأمثلة أعلاه، استخدمت القيمة الجدولية للجيب وجيب التمام: 0.5. أولئك. أحد تلك المعاني التي يعرفها الطالب يجب.الآن دعونا توسيع قدراتنا ل جميع القيم الأخرى.قرر، فقرر!)

لذا، دعونا نحتاج إلى حل هذه المعادلة المثلثية:

لا توجد قيمة جيب التمام هذه في الجداول القصيرة. نحن نتجاهل ببرود هذه الحقيقة الرهيبة. ارسم دائرة، ضع علامة 2/3 على محور جيب التمام وارسم الزوايا المقابلة. نحصل على هذه الصورة.

دعونا ننظر أولاً إلى الزاوية الموجودة في الربع الأول. إذا كنا نعرف فقط ما يساوي x، فسوف نكتب الإجابة على الفور! لا ندري... فشل!؟ هادئ! الرياضيات لا تترك شعبها في ورطة! لقد توصلت إلى جيب التمام القوسي لهذه الحالة. لا أعلم؟ بلا فائدة. اكتشف أن الأمر أسهل بكثير مما تعتقد. لا توجد تعويذة صعبة واحدة حول "الدوال المثلثية العكسية" على هذا الرابط... هذا غير ضروري في هذا الموضوع.

إذا كنت تعرف، فقط قل لنفسك: "X هي الزاوية التي جيب تمامها يساوي 2/3". وعلى الفور، من خلال تعريف قوس جيب التمام، يمكننا أن نكتب:

نتذكر الثورات الإضافية ونكتب بهدوء السلسلة الأولى من جذور معادلتنا المثلثية:

x 1 = قوس 2/3 + 2π n, n ∈ Z

تتم كتابة السلسلة الثانية من جذور الزاوية الثانية تلقائيًا تقريبًا. كل شيء هو نفسه، فقط X (arccos 2/3) سيكون مع ناقص:

x 2 = - arccos 2/3 + 2π n, n ∈ Z

وهذا كل شيء! هذا هو الجواب الصحيح. حتى أسهل من قيم الجدول. ليست هناك حاجة لتذكر أي شيء.) بالمناسبة، سيلاحظ الأكثر انتباهًا أن هذه الصورة توضح الحل من خلال قوس جيب التمام في جوهرها لا يختلف عن الصورة بالنسبة للمعادلة cosx = 0.5.

بالضبط! المبدأ العام هو ذلك فقط! لقد قمت عمدا برسم صورتين متطابقتين تقريبا. الدائرة توضح لنا الزاوية X بواسطة جيب التمام. ما إذا كان جيب التمام جدولي أم لا غير معروف للجميع. ما هو نوع هذه الزاوية، π /3، أو ما هو قوس جيب التمام - الأمر متروك لنا لنقرره.

نفس الأغنية مع جيب. على سبيل المثال:

ارسم دائرة مرة أخرى، ضع علامة على جيب الجيب يساوي 1/3، وارسم الزوايا. وهذه هي الصورة التي نحصل عليها:

ومرة أخرى، الصورة هي نفسها تقريبًا بالنسبة للمعادلة سينكس = 0.5.مرة أخرى نبدأ من الزاوية في الربع الأول. ما هو X يساوي إذا كان جيبه هو 1/3؟ لا مشكلة!

الآن الحزمة الأولى من الجذور جاهزة:

x 1 = أركسين 1/3 + 2π n, n ∈ Z

دعونا نتعامل مع الزاوية الثانية. في المثال الذي تبلغ قيمته الجدولية 0.5، كانت تساوي:

π - س

وسوف يكون بالضبط نفس الشيء هنا أيضا! فقط x مختلف، arcsin 1/3. وماذا في ذلك!؟ يمكنك تدوين الحزمة الثانية من الجذور بأمان:

س 2 = π - أركسين 1/3 + 2π n, n ∈ Z

هذه إجابة صحيحة تماما. على الرغم من أنها لا تبدو مألوفة للغاية. ولكن الأمر واضح، كما آمل.)

هذه هي الطريقة التي يتم بها حل المعادلات المثلثية باستخدام الدائرة. وهذا الطريق واضح ومفهوم. هو الذي يحفظ في المعادلات المثلثية مع اختيار الجذور في فترة معينة، في عدم المساواة المثلثية - يتم حلها بشكل عام دائمًا تقريبًا في دائرة. باختصار، في أي مهام أصعب قليلاً من المهام القياسية.

دعونا نطبق المعرفة في الممارسة العملية؟)

حل المعادلات المثلثية:

أولاً، أبسط، مباشرة من هذا الدرس.

الآن أصبح الأمر أكثر تعقيدًا.

تلميح: هنا عليك أن تفكر في الدائرة. شخصيا.)

والآن هم بسيطون ظاهريًا... ويطلق عليهم أيضًا حالات خاصة.

com.sinx = 0

com.sinx = 1

com.cosx = 0

com.cosx = -1

تلميح: هنا تحتاج إلى معرفة مكان وجود سلسلتين من الإجابات في الدائرة وأين توجد سلسلة واحدة... وكيفية كتابة سلسلة واحدة بدلاً من سلسلتين من الإجابات. نعم، حتى لا يضيع جذر واحد من عدد لا نهائي!)

حسنًا ، بسيط جدًا):

com.sinx = 0,3

com.cosx = π

tgx = 1,2

ctgx = 3,7

تلميح: هنا عليك أن تعرف ما هو أركسين وأركوسين؟ ما هو الظل القوسي، الظل القوسي؟ أبسط التعاريف. لكنك لا تحتاج إلى تذكر أي قيم في الجدول!)

الإجابات بالطبع فوضى):

× 1= arcsin0,3 + 2π n, n ∈ Z
× 2= π - أركسين0.3 + 2

ليس كل شيء يعمل؟ يحدث. إقرأ الدرس مرة أخرى. فقط مدروس(هناك مثل هذه الكلمة القديمة...) واتبع الروابط. الروابط الرئيسية تدور حول الدائرة. وبدونها، يصبح علم المثلثات مثل عبور الطريق معصوب العينين. في بعض الأحيان يعمل.)

إذا أعجبك هذا الموقع...

بالمناسبة، لدي موقعين أكثر إثارة للاهتمام بالنسبة لك.)

يمكنك التدرب على حل الأمثلة ومعرفة مستواك. الاختبار مع التحقق الفوري. دعونا نتعلم - باهتمام!)

يمكنك التعرف على الوظائف والمشتقات.

يمكنك طلب حل مفصل لمشكلتك!!!

المساواة التي تحتوي على مجهول تحت علامة الدالة المثلثية (`sin x، cos x، tan x` أو `ctg x`) تسمى معادلة مثلثية، وسننظر في صيغها بشكل أكبر.

أبسط المعادلات هي `sin x=a، cos x=a، tg x=a، ctg x=a`، حيث `x` هي الزاوية التي سيتم العثور عليها، و`a` هو أي رقم. دعونا نكتب الصيغ الجذرية لكل منها.

1. المعادلة `sin x=a`.

بالنسبة إلى `|a|>1`، لا يوجد لها حلول.

عندما `|أ| \leq 1` يحتوي على عدد لا نهائي من الحلول.

صيغة الجذر: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. المعادلة `cos x=a`

بالنسبة إلى `|a|>1` - كما في حالة جيب الجيب، ليس لها حلول بين الأعداد الحقيقية.

عندما `|أ| \leq 1` يحتوي على عدد لا نهائي من الحلول.

صيغة الجذر: `x=\pm arccos a + 2\pi n, n \in Z`

حالات خاصة للجيب وجيب التمام في الرسوم البيانية.

3. المعادلة `tg x=a`

لديه عدد لا نهائي من الحلول لأي قيم `a`.

صيغة الجذر: `x=arctg a + \pi n, n \in Z`

4. المعادلة `ctg x=a`

لديه أيضًا عدد لا نهائي من الحلول لأي قيم `a`.

صيغة الجذر: `x=arcctg a + \pi n, n \in Z`

صيغ جذور المعادلات المثلثية في الجدول

لجيب:
لجيب التمام:
بالنسبة للظل وظل التمام:
صيغ حل المعادلات التي تحتوي على دوال مثلثية عكسية:

طرق حل المعادلات المثلثية

حل أي معادلة مثلثية يتكون من مرحلتين:

  • مع المساعدة في تحويله إلى الأبسط؛
  • حل أبسط معادلة تم الحصول عليها باستخدام الصيغ الجذرية والجداول المكتوبة أعلاه.

دعونا نلقي نظرة على طرق الحل الرئيسية باستخدام الأمثلة.

الطريقة الجبرية.

تتضمن هذه الطريقة استبدال متغير واستبداله بالمساواة.

مثال. حل المعادلة: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

قم بالاستبدال: `cos(x+\frac \pi 6)=y`، ​​ثم `2y^2-3y+1=0`،

نجد الجذور: `y_1=1, y_2=1/2`، ويتبع منها حالتان:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

الإجابة: `x_1=-\frac \pi 6+2\pi n`، `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

التخصيم.

مثال. حل المعادلة: `sin x+cos x=1`.

حل. لننقل جميع حدود المساواة إلى اليسار: `sin x+cos x-1=0`. باستخدام ، نقوم بتحويل وتحليل الجانب الأيسر:

`الخطيئة x - 2sin^2 x/2=0`،

`2sin x/2 cos x/2-2sin^2 x/2=0`،

`2سين x/2 (cos x/2-sin x/2)=0`،

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n` , `x_2=\pi/2+ 2\pi n`.

الإجابة: `x_1=2\pi n`، `x_2=\pi/2+ 2\pi n`.

التخفيض إلى معادلة متجانسة

أولاً، عليك اختزال هذه المعادلة المثلثية إلى أحد الشكلين:

`a sin x+b cos x=0` (معادلة متجانسة من الدرجة الأولى) أو `a sin^2 x + b sin x cos x +c cos^2 x=0` (معادلة متجانسة من الدرجة الثانية).

ثم اقسم كلا الجزأين على `cos x \ne 0` - للحالة الأولى، وعلى `cos^2 x \ne 0` - للحالة الثانية. حصلنا على معادلات `tg x`: `a tg x+b=0` و`a tg^2 x + b tg x +c =0`، والتي تحتاج إلى حل باستخدام الطرق المعروفة.

مثال. حل المعادلة: `2 sin^2 x+sin x cos x - cos^2 x=1`.

حل. لنكتب الجانب الأيمن بالشكل `1=sin^2 x+cos^2 x`:

`2 الخطيئة^2 x+الخطيئة x cos x — cos^2 x=` `الخطيئة^2 x+cos^2 x`,

`2 الخطيئة^2 x+الخطيئة x cos x — cos^2 x -` ` الخطيئة^2 x — cos^2 x=0`

`الخطيئة^2 x+الخطيئة x cos x — 2 cos^2 x=0`.

هذه معادلة مثلثية متجانسة من الدرجة الثانية، نقسم طرفيها الأيمن والأيسر على `cos^2 x\ne 0`، فنحصل على:

`\frac (sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) — \frac(2 cos^2 x)(cos^2 x)=0`

`tg^2 x+tg x — 2=0`. دعنا نقدم الاستبدال `tg x=t`، مما يؤدي إلى `t^2 + t - 2=0`. جذور هذه المعادلة هي `t_1=-2` و`t_2=1`. ثم:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

إجابة. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

الانتقال إلى نصف الزاوية

مثال. حل المعادلة: `11 sin x - 2 cos x = 10`.

حل. دعونا نطبق صيغ الزاوية المزدوجة، مما يؤدي إلى: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x /2 +10 كوس ^2 س/2`

`4 تيراغرام^2 س/2 — 11 تيراغرام س/2 +6=0`

وبتطبيق الطريقة الجبرية الموصوفة أعلاه نحصل على:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

إجابة. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

مقدمة من الزاوية المساعدة

في المعادلة المثلثية `a sin x + b cos x =c`، حيث a,b,c معاملات وx متغير، قسّم كلا الطرفين على `sqrt (a^2+b^2)`:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) cos x =` `\frac c(sqrt (a^2) ) +ب^2))`.

المعاملات الموجودة على الجانب الأيسر لها خصائص الجيب وجيب التمام، أي أن مجموع مربعاتها يساوي 1 ووحداتها ليست أكبر من 1. ولنرمز إليها كما يلي: `\frac a(sqrt (a^2) +b^2))=cos \varphi` , ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2)) =C`، ثم:

`cos \varphi sin x + sin \varphi cos x =C`.

دعونا نلقي نظرة فاحصة على المثال التالي:

مثال. حل المعادلة: `3 sin x+4 cos x=2`.

حل. بقسمة طرفي المساواة على `sqrt (3^2+4^2)`، نحصل على:

`\frac (3 sin x) (sqrt (3^2+4^2))+` `\frac(4 cos x)(sqrt (3^2+4^2))=` `\frac 2(sqrt) (3^2+4^2))`

`3/5 الخطيئة x+4/5 cos x=2/5`.

دعنا نشير إلى `3/5 = cos \varphi`، `4/5=sin \varphi`. بما أن `sin \varphi>0`، `cos \varphi>0`، فإننا نأخذ `\varphi=arcsin 4/5` كزاوية مساعدة. ثم نكتب المساواة لدينا في الشكل:

`cos \varphi sin x+sin \varphi cos x=2/5`

بتطبيق صيغة مجموع زوايا الجيب، نكتب مساويتنا بالشكل التالي:

`الخطيئة (x+\varphi)=2/5`،

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

إجابة. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

المعادلات المثلثية العقلانية الكسرية

هذه هي المساواة مع الكسور التي تحتوي بسطها ومقاماتها على دوال مثلثية.

مثال. حل المعادلة. `\frac (sin x)(1+cos x)=1-cos x`.

حل. اضرب واقسم الجانب الأيمن من المساواة على `(1+cos x)`. ونتيجة لذلك نحصل على:

`\frac (sin x)(1+cos x)=` `\frac ((1-cos x)(1+cos x))(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-` `\frac (sin^2 x)(1+cos x)=0`

`\frac (sin x-sin^2 x)(1+cos x)=0`

بالنظر إلى أن المقام لا يمكن أن يساوي الصفر، نحصل على `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

دعونا نساوي بسط الكسر بالصفر: `sin x-sin^2 x=0`، `sin x(1-sin x)=0`. ثم `sin x=0` أو `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

بالنظر إلى أن ` x \ne \pi+2\pi n, n \in Z`، الحلول هي `x=2\pi n, n \in Z` و `x=\pi /2+2\pi n` ، `ن \في Z`.

إجابة. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

يُستخدم علم المثلثات، والمعادلات المثلثية على وجه الخصوص، في جميع مجالات الهندسة والفيزياء والهندسة تقريبًا. تبدأ الدراسة في الصف العاشر، وهناك دائمًا مهام لامتحان الدولة الموحدة، لذا حاول أن تتذكر جميع صيغ المعادلات المثلثية - فهي بالتأكيد ستكون مفيدة لك!

ومع ذلك، لا تحتاج حتى إلى حفظها، والشيء الرئيسي هو فهم الجوهر والقدرة على استخلاصه. انها ليست صعبة كما يبدو. شاهد بنفسك من خلال مشاهدة الفيديو.

مفهوم حل المعادلات المثلثية.

  • لحل معادلة مثلثية، قم بتحويلها إلى واحدة أو أكثر من المعادلات المثلثية الأساسية. حل معادلة مثلثية يأتي في النهاية إلى حل المعادلات المثلثية الأربع الأساسية.
  • حل المعادلات المثلثية الأساسية.

    • هناك 4 أنواع من المعادلات المثلثية الأساسية:
    • الخطيئة س = أ؛ كوس س = أ
    • تان س = أ؛ سي تي جي س = أ
    • يتضمن حل المعادلات المثلثية الأساسية النظر إلى مواضع x المختلفة على دائرة الوحدة، بالإضافة إلى استخدام جدول التحويل (أو الآلة الحاسبة).
    • مثال 1. الخطيئة x = 0.866. باستخدام جدول التحويل (أو الآلة الحاسبة) سوف تحصل على الإجابة: x = π/3. تعطي دائرة الوحدة إجابة أخرى: 2π/3. تذكر: جميع الدوال المثلثية دورية، مما يعني أن قيمها تتكرر. على سبيل المثال، دورية sin x وcos x هي 2πn، ودورية tg x وctg x هي πn. ولذلك يتم كتابة الجواب على النحو التالي:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • مثال 2.cos x = -1/2. باستخدام جدول التحويل (أو الآلة الحاسبة) سوف تحصل على الإجابة: x = 2π/3. تعطي دائرة الوحدة إجابة أخرى: -2π/3.
    • x1 = 2π/3 + 2π; x2 = -2π/3 + 2π.
    • مثال 3. tg (x - π/4) = 0.
    • الجواب: س = ط/4 + ط ن.
    • مثال 4.ctg 2x = 1.732.
    • الجواب: س = ط/12 + ط ن.
  • التحويلات المستخدمة في حل المعادلات المثلثية.

    • لتحويل المعادلات المثلثية، يتم استخدام التحويلات الجبرية (التحليل، اختزال المصطلحات المتجانسة، وما إلى ذلك) والمتطابقات المثلثية.
    • مثال 5: باستخدام المتطابقات المثلثية، يتم تحويل المعادلة sin x + sin 2x + sin 3x = 0 إلى المعادلة 4cos x*sin (3x/2)*cos (x/2) = 0. وهكذا، فإن المعادلات المثلثية الأساسية التالية بحاجة إلى حل: cos x = 0; خطيئة(3س/2) = 0; كوس(س/2) = 0.
    • إيجاد الزوايا باستخدام قيم الوظائف المعروفة.

      • قبل أن تتعلم كيفية حل المعادلات المثلثية، عليك أن تتعلم كيفية إيجاد الزوايا باستخدام قيم الدوال المعروفة. يمكن القيام بذلك باستخدام جدول التحويل أو الآلة الحاسبة.
      • مثال: كوس س = 0.732. الآلة الحاسبة سوف تعطي الجواب س = 42.95 درجة. ستعطي دائرة الوحدة زوايا إضافية، جيب تمامها هو 0.732 أيضًا.
    • ضع المحلول جانباً على دائرة الوحدة.

      • يمكنك رسم حلول لمعادلة مثلثية على دائرة الوحدة. حلول المعادلة المثلثية على دائرة الوحدة هي رؤوس مضلع منتظم.
      • مثال: الحلول x = π/3 + πn/2 على دائرة الوحدة تمثل رؤوس المربع.
      • مثال: الحلول x = π/4 + πn/3 على دائرة الوحدة تمثل رؤوس مسدس منتظم.
    • طرق حل المعادلات المثلثية.

      • إذا كانت معادلة مثلثية معينة تحتوي على دالة مثلثية واحدة فقط، قم بحل تلك المعادلة كمعادلة مثلثية أساسية. إذا كانت معادلة معينة تتضمن دالتين مثلثيتين أو أكثر، فهناك طريقتان لحل هذه المعادلة (اعتمادًا على إمكانية تحويلها).
        • طريقة 1.
      • حول هذه المعادلة إلى معادلة من الصورة: f(x)*g(x)*h(x) = 0، حيث f(x)، g(x)، h(x) هي المعادلات المثلثية الأساسية.
      • مثال 6. 2cos x + sin 2x = 0. (0< x < 2π)
      • حل. باستخدام صيغة الزاوية المزدوجة sin 2x = 2*sin x*cos x، استبدل sin 2x.
      • 2cos x + 2*sin x*cos x = 2cos x*(sin x + 1) = 0. الآن قم بحل المعادلتين المثلثيتين الأساسيتين: cos x = 0 و(sin x + 1) = 0.
      • مثال 7. cos x + cos 2x + cos 3x = 0. (0< x < 2π)
      • الحل: باستخدام المتطابقات المثلثية، حول هذه المعادلة إلى معادلة من الصورة: cos 2x(2cos x + 1) = 0. الآن قم بحل المعادلتين المثلثيتين الأساسيتين: cos 2x = 0 و (2cos x + 1) = 0.
      • مثال 8. sin x - sin 3x = cos 2x. (0< x < 2π)
      • الحل: باستخدام المتطابقات المثلثية، قم بتحويل هذه المعادلة إلى معادلة من الصورة: -cos 2x*(2sin x + 1) = 0. الآن قم بحل المعادلتين المثلثيتين الأساسيتين: cos 2x = 0 و (2sin x + 1) = 0 .
        • الطريقة 2.
      • حول المعادلة المثلثية المعطاة إلى معادلة تحتوي على دالة مثلثية واحدة فقط. ثم استبدل هذه الدالة المثلثية بأخرى غير معروفة، على سبيل المثال، t (sin x = t; cos x = t; cos 2x = t, tan x = t; tg (x/2) = t، إلخ).
      • مثال 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0< x < 2π).
      • حل. في هذه المعادلة، استبدل (cos^2 x) بـ (1 - sin^2 x) (حسب الهوية). المعادلة المحولة هي:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. استبدل sin x بـ t. تبدو المعادلة الآن كما يلي: 5t^2 - 4t - 9 = 0. هذه معادلة تربيعية لها جذرين: t1 = -1 وt2 = 9/5. الجذر الثاني t2 لا يفي بنطاق الوظيفة (-1< sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • مثال 10.tg x + 2 tg^2 x = ctg x + 2
      • حل. استبدل tg x بـ t. أعد كتابة المعادلة الأصلية كما يلي: (2t + 1)(t^2 - 1) = 0. الآن أوجد t ثم أوجد x لـ t = tan x.
  • 2024 asm59.ru
    الحمل والولادة. البيت و العائلة. الترفيه والتسلية